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FAILURE RATE ESTIMATION USING RAN1)OM SMOOThING

by

Douglas R. Miller
Nozer D. Singpurwalla

~0~

In this note , we investigate~ SOme aspects 
of the distribution

theory of an estimator of the failure—rate func t ion . We clarify~ and give
a s l i ghtly d ifferent approach to some asymptotic results of Singpurwal.la

~(l975) for the failure rate process from exponential life times. In addi—

tion , we extend these results to the case of general lifetimes. This

leads us to confidence reg ion~ for ~randomly smoothed~ versions of the
failure—ra te function , for both finite and large samples.
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1. Introduction 0

Let F be the distribution function of a random lifetime , and

let r = — 
~~~~~ log(l—F) be its failure rate function. The purpose of this

note is to consider estimators of r based on complete and censored data ,

and to investigate the related distribution theory for both the finite and

th~
’ infin ite sample cases.

Consider a collection pf n identical items which function inde—

penden tly of one another. Let X . (L1
) be the t thte to. failure (withdraw-

al) of the ith item. We assume that the X j ’s are independent and identi-

cally dis tr ibuted wi th dis t~ribution function F . The L
i
’s are random

withdrawal times which may have any joint distribution , but Ti’ust be m dc— 0

nendent of the X .’s . Let Z . = min(X .,L.) ; thus , if Z . = X , th en
— 1 1. 1 1 ~ i

the ith item has failed at X . , and if Z = L . , then the ith item was 
0

1 i 1

withdrawn fr om observ ation at L . . Suppose tha t k failures have been

observed in all , and let

0 Z~ 0~ .~~ ~~~~ < Z~ 2~ 
. . - < 7 (k)
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be the ordered failure times. Let N
n
(t) be the total number of items

t
on test at time t , and let T (t) = f N (u)du be the “total time onn n

test” at time t -

We shall f irs t def ine a “naive” estimator of r , say R , as

R
n
(Z) = 

T
n

(Z (i)) 
_ T

~~~ (f_1)) 
Z~ 1_1~

< z ~ Z(~ ) (1.1)

Z > Z (k) •

Some Conim,~n ts  uo the Naive E s t i m a t o r

We note that the es t imator  R is the reciprocal  of the to ta l  t ime
n

on test , on an interval over which it is defined . The estimator , in effect ,

assumes a piece—w ise exponential distribution between successive failure

points. In order to compute R (z) , we must look “ahead” to the fa ilure

wh ich immediately follows z . Thus, the estimator R (z) is a left—n
— con t i i i u ou s  S tep t un ctiol i.

Assuming that there is no censoring or withdrawals (i.e., when k n )
and assuming that n is large , Sethuraman and Singpurwalia (1977) show

that R (z) is not consistent. They induce consistency by smoothing this

estimatot using windows of fixed width. The width of their windows depends ,

among other things , on the sample size n . In this paper , we shall consider

another smoothing procedure. However , we first obtain a right—continuous ,

closed form version of our estimator (1.1).

Ri~~ t— Co n uou .s ~~_r s n 1 t ~ c Na i ve Estimator

Let F denote the empirical distribution function of the Z . ‘ s
n (i)

and let

F ( u ) = ~n f {x  F(x) > u }

— 2 —
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be the r i gh t — c o n t i n u o u s  inverse of F , w i t h  F t (O) 0 - Then , fo r

Z .  < z < Z .( i— i )  — (i)

F
1F (z) Z

(~) 
and F 1(F (z) — k 1 ) Z (i l) -

Thus , given k failures , a right—continuous version of our naivo estimator ,

in closed form , is

R (z) = 
1 

—l —l  - ( 1.2)n f ( F ’F ( z ) ) — T ( F  (F ( z ) — k  ))
n n n n n n

An analysis of the right— and the left—continuous 1~iersions of R (z)

will be the same , and thus we will not make any distinction of this through—

out our paper. However , the notation in Sec tions 3 and 4 will be simplif ied
by using ri ght—continuity.

1.1 A Smoothed Version of the Naive Estimator 
0

We next introduce what we call a “randomly smoothed ” vers ion of our

naive estimator. Our motivation for choosing this smoothing techni que is

given in Section 1.2.

For 0 < h < 1 , let

de f
[h k ( n ) 1  mincf i , ah ’ integer : i > h k ( n ) }

that is, [hk(n)1 is the smallest integer greater than or equal to hk(n)

where k(n) , the number of observed failures , is random. For Z
(i_l) ~

z < Z . , we define a smoothed estimator R (z) as
(i) — —~~~~~~ n , h

R ( ) - 
[hk(n) ) 

_______

n , h Z 

~~ ( . ) )  - ‘r (z ( f Ehk(n)])~ 

-

In closed form , th e above estimator can also be written as

R (z) = 
(hk(n)1 

. (1 .3)n ,h T ( F 1F (z)) — T ( F 1
(F (z)—h))

3

0 ~~~~~~~~~~~~~~~~~~~~~~ 0
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If we set J [hk(n)] then for Z(1_1) ~ z 
< Z (j )

R .(z) = ___________________-

~~~~~~~~~~~~~

——-- . (3.4)
T (F 1

F (z)) — T (F 1 (F ( z )  — j k 1 ))
n n n n n n (n)

In the above expression , j is the number of failure intervals used in

estimating the failure rate at each fixed time point.

We now give two equivalent expressions for R . in terms of

our na ive  es t i m a t o r .  These two expressions reveal the  “smoo th ing” more

t r a n s p a r e n t ly .  in Sect ion 1.3 we shall show that for Z
(~ _1) ~ 

Z < Z~~1~

j— 1
(R . ( z ) )  = -:- -— ( 1 . 5 )

~ m~ø 
R ( Z

(~~~ )
)

and that

z-
(i) R (u)dT (u)

R .(z) = ~11) . ( 1.6 )
n ,3

~ 1j  dT (u)
z . .
(i-i)

Since T (t) is the total time on test at time t , Equa tion (1.6)

can be regarded as the filtering of R (u) through a random window T (u)

the total time on test at time u . .  We shall refer to this as the “total

time on test random window .” 0 In the following section we present consid-

erations which led us to the choice of our smoothing technique. In the

sequel , we also introduce some notation which will be used later. 
0

1. 2 J u s t i fi c a t i o n  for  Smoothing Technique

In retrospect , we state that a reasonable justification for the

choice of our smoothing t echn ique  is t h a t  i t  leads us to a t r a c t ab l e

d i s t r i b u t i on — f r e e  t h e o r y .  However , a p r imary  ( -u n s i d er a t io n  which  led us

to our s m o o t h i n g  t e c h n i q u e  was our desire to c l a r i f y  and to expand the

asympto t i c  r e s u l t s  of Slngpurwal la  (1975) .  Of p a r t i c u l a r  in t e res t  is h i s

— 4 —

~~-~~ . .L______ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A
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Theorem 4.2, which states that for an exponential distribution , the

first difference of the reciprocal of the estimated failure rate converges

weakly to a moving average process. He uses this theorem to give a par-

tial justification for an empirical (Box—Jenkins type) time series analysis

of the estimated failure rate. Singpurwalla attempts to prove this theorem

by u s i n g  the  following theorem (see Sect ion  2 ) :

- l i— i i ~If F is exponential , then for t ~ L~~ ’ ~~~ 
i”l ,2 , . .  - ,k( n )

the “total tine on test process” V [k~~~ t] 
= T

n
(Z (i l) )/ T

n
(Z k(n)) converges

weakly to the Brownian brid ge W° [Billingsley (1968)1. If for any fixed

h , 0 < h < 1 , we define the difference operator V
1 

[0,1] ÷ Eh ,1]

2 o
f(x) = f(x) — f(x—h) , then V is a moving average process.  Thus ,

considering the differences of the total time on test process V [k~~~ t] 
be-

comes quite natural.

We shall see in Section 3 that V
h 

V [k( ) t ] Ii = I / n  is the recip-

rocal of our randomly smoothed estimator R
n , j (Z) given by E q u a t i o n  (1. 4 ) ;

th is  was the r a t i o n a l e  behin d  the choice  of our e s t i m a t o r .

We can provide  some further insigh t into the choice of our smoo thed

estimator if we note that the right—hand side of Equation (1 .4)  denotes

the total number of failures j > 1 divided by the total t ime on test

be tween Z and Z . . - Thus, our smoothed estimator is merel y an
(i) (i— j)

extension of our naive estimator , and is obtained by considering a ra ndom
interva l Z( f )  — Z

(~~~~) 
, where I {hk(n)1 .

0 
1.3 Equivalence B2twcen the Versions of R .(z)

It now remains to ho shown that (R~~ 1
(z)) 1 

equals the right—hand

side of Equation (1.5), and that Equations (1.5) and (1.6) are indeed

equivalent -

— s —

_ _ _ _ _ _  -
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To see t h a t  the  former is true , we note Ecf. Barlow and Campo

(1975) j ,  t h a t

~~~~ 
(T~~(Z~~~~) - T

n
(Z (j j )

) )  = ~~~ (i) F (u ) d u

(i—j)

and that R (z) is specified by Equation (1.1).

In order to verify the equivalence between Equations (1.5) and (1.6),

we recall a property of the total time on test. This property [cf. Barlow

and Campo (1975)], states that the derivative of the total time on test is

the reciprocal  of the failure rate.

1.4 Summary

The r ema inde r  of th is  paper is devoted to inves t i ga t ing  the  d i s t r i -

bution theory of R
n ,h 

and d e m o n s t r a t i n g  i ts usefulness . 0

In Section 2 we present some preliminary results , and in Section 3

we apply thes e to R
1 

when F is exponential . Here we also cl arify and

expand upon some of the results of Singpurwalla. In Section 4, we consider

the distribution theory of for both finite and large samp les , and

present a theory for construction confidence bands for r , when r is

filtered through the total ti 1ne an test  window.

In Section 5, we discuss the calculation of critical values for

use in constructing confidence bands. In Sec t ion  6 we i l l u s t r a t e  our tech-

nique for estimating the fa~ l iire rat e of AC generators , based on some rea l

‘life data. In Section 7 we generate failure data from a known distribution

and use it to estimate the failure rate. We conclude the paper with so me

discussion of the t echnique .

2. Pre I imina !y [l i st r ib ut io n  Theory

We shall assume the conditions of failure and random withdrawals ,

as stated in Section 1. We shall also adhere to the notation of Section 1 .

— 6 —

0=0
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The text of our paper is based on the following distribution—free

result. Lemma 2. 1 is a mild extension of that due to Barlow and Proschan

(1969).

Lemma 2 . 1 :  For any distribution F (F(0 )=O) with failure rate

r(~ ) , the random variables

—- 
z -

Y . r( u)N (u)du , i=l ,2,.. - , k (n )
‘ n

are independently distributed with density e~~
’

Proof: The proof follows that of Barlow and Proschan , by condition-

ing over the values of L. and by assuming independence between the L .

and the X . .
1

We recall that k(n) equals the observed number of failures from a

collec tion of n identical items .

Theorem 2.2: When n ~

1 (Z~~~~~~~ 
r(u)N (u)du — t k (n )~ , o < t < i { w ( t)  , 0 < t < i}

I - -

where -+ indicates convergence of random functions and W is the standard

Brownian motion !Bi !lingsley ,(1968)j . 0

- Proof: From Lemma (2.1),

Z [t k ( n ) 1

~ 
[ t k ( n ) J  r ( u ) N ( u Y d u  = 

~ Y . ; (2 .1 )
0 

0 i= 1

the result follows fro’-n Donsker ’s Theorem (Billingsley , p. 68). /1

Corollary 2.3: When F Is exponential with r(u) A , u > 0 ,

~~~~~~~~~~~ ~
) ,  O t < l j ~~~~{W ( t )  , O < t < l )  .

‘

I 

— 7 —  
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For rompleteness , we also present the following well—known theorem

[Pyke (1969) , Shorack (1972)].

Theorem 2.4: When F is exponential with r(u) = A , u > 0

I~~
(n) (_~ ~~~~ — , 0 < t < 1 -÷ {W°(t) , 0 < t < 1) , (2.2)

n (k)

wh ere V° is the Brownian brid ge IB illingsley (1968)1. 0

P r o o f :  The proo f follows from the fact that

~ [tk(n)}T ( Z [ k ~~~ ]
) = 

~ i~ l 

‘

~

‘

~~

and that

j k

~ Y . / ~~ Y j , j 1,2,... ,k l
i=i i=l

are d i s t r ibu ted  as the  ( k — i )  order s t at i s t i cs  from a un i fo rm [0 , 1]

distribution [Karlin (1966)1. These in turn converge to a Brownian brid ge ./ /

— Theorem 2.5:

Z
[ (k)’ 

[tn(k)]
(a) tn (R (u ) - r ( u ) ) N  (u ) du  = 

~~ 
(1 - Y .)n 

i=l

and

Z 0

(b) [tn(kfl (R (u) —r(u))N (u)du , 0 t < I -
~ (W( t) , 0 < t < i} -n n -

Proof: We first not’e that

z . z .
f R (u)N (u)du = _________—-—- I N ( u ) d u  1
Z (1 1) 

n n T~~(Z ( f ) ) - Tfl(z(i.l)) Z (~ _ 1)

Part (a) of the theorem follows from this and Equation (2.1). Part (h) of

the theorem follows from T)onsker ’s Theorem. / /

— 8 —

___  - -  ~~~~~~~~~~~~—- . - -~~~-~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -~~~~~~~~ ~~~~~~ 0 -- -
~~~
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in terms of the “total time on test process ,” part (b) of th~ above

theorem gives LIS

R (u)dT (u) - 
Z
[tk~~~ ] r(u)dT (u)1 , 0 < t < 1

n ,  -
~~~~~~~~~~

(2.3)

Ik’< (°)l 1
= 

__
. 

~~ 
(1 — Y .) , 0 < t < 1 ~~- {w(t) , 0 < t < 1) -

v’k ( n )  i—I

3. ~ totic Theory for Exponential Lifetimes

In this section . and the following one , we derive some distribution

theory for our smoothed estimator R~~ 11 - We do this by taking difference s of

the expressions derived in Section 2.

0 

The difference operator V
h 

was defined in Section 1.2. For any

f ixed h , 0 < h < 1 , V
h 

is a continuous function in Skorohod ’s fl—topology ,

and thus when V
h 

is applied to the statement of Corollary 2.3, the continu-

ous mapping theorem (BilLingsley , Theorem 5.1) applies to give

I V A T (Z )
h ~i [tk(n) ] 

— V
ht) 

h < t < l} {V
1
w (t) , ii < t < i} -

Since V
h
t h , and since Equation (1.3) implies

(7 ) - 
[hk ( n ) ]

~~,n ~([tk(n)]-1) 
- 

V
h

T ( Z
[tk( )]

)

we have proved

Theorem 3.1: When F is exponential with r(u) = A , u > 0

V~~(n )  
~~~~~~~~~~~~~~~~~~~~~ 

— h ~ t .~L 1 ~ {V
h 

-
~ W ( t )  h ~ t ~ 1)

~ n , h (ftk(n) 1-1 ) / Ii

which is equivalent to

~~~ —-
, — -a . O < t < l  -

~ 
(V
h~~~

W(t) , h < t < l }  -

n ,h itk(n)] 1

__________________________ 0 0



0• ~~~ -. ~~0~~~~~~~~~~~~~~~~~ -- _ _ _ _ _

T-347

An analogous result can be proved by tak ing d ifferences of (2.2). 1:

Singpurwalla (1975) does this; however , he uses a sequence of difference

operators V
11 -~ 0 - In this context , Theorem 5.5  of Bi l l ings ley  mus t

be used. If we app ly the operator V1/n to the statement of Corollary

2.3 , and assume that k=n , we obta in

— - 

{ 

(V l/ AT (Z[t J ) 
- W

11 t ) ,  ~~ 
< 

~ < l} ~

Since V 11 t = 1/n , and since Equat ion (1.1) imp lies

1R ( Z (~~t J l )
) - 

~~ /nTn~~~[tn))
we have

~~ ( R z
’ ~~~~~~~~~~~~~~~~~~~~~

‘n n [ t n]

The above result is result is consistent with the fact that the naive

estimator R ’ has a non—degenerate limiting distr ibution [cf. Sethuraman

and Singp urwalla (1977)]. Similarly, the limit in Theorem 4.2 of Singpur—

walla should be 0.

3.1 Time Series Analys is of Failure Rates

The value of performin,g an .emp irical t ime ser ies analysis on the
estimated failure rate was demonstrated by Singpurwalla . (1975). A goal

there was to obtain a li mit ing process of the form: a trend pitis a Box—

Jenkins type ARIMA process. For comp le te samples , it follows from Theorem

3.1 that

(R
011

(Z
i~ 0j

)) 1 
= A 1 

+ (V~ h) ’VhW(t)

that is, a constant plus the increments of a Brownian mot ion , which is

similar to discrete white noise. An analogous result is observed by

Sethuramari and Singpurwalla for the naive estimator R
n 

Thus it appears

that the desired goal of obtaining a limiting process of the form : a trend

— 1 0 —

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~_~~~~~~~ 00 ~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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plus a Box—Jenkins ARIMA process i s  not possible , unless some additional

structure is assumed .

However , we conjecture that the above goal could possibly be realized

if the sample size is fin ite, and if the withdrawals are dependent on life—

times. We are study ing this possibility in the li gh t of the following

ramifications:

1. If the lifetimes are exponential , they do not age ; this
makes i t  d i f f i c u l t  to ima g ine how withdrawals depend on
the lifetime.

2. Without making restrictions on the life distributions ,
i t  is imposs ib le  to de te rmine  from the  da ta  whether  or
not withdrawals are dependent on lifetimes [Miller
(1976)].

4. Distribution Theory for General Lifetimes

As in Section 3, we app ly the difference operator V
h 

to Equation

(2.3), and noting that h = j(k(n)) 
1 
, we obtain

Z Z [tk(n)]
([tk(n)J R (u)dT (u) — 

~ 
([tk(n)] 

r(u)dT (u) = (l—Y .)
Z
(E tk(n)I j) 

° Z
([tk(fl)) j) 

i=[tk(n)1-j+l

(4.1)

We next define a “randomly smoothed” version of r,

z .
(i) r(u)dT (u) ..

z _ .
r
T .

(z) = 
T(~~~~~ - T(Z

(~ .) )  
Z ( i_j )  ~~ z < Z(1) 

. (4.2)

Combining Equation (4.2) with Equation (1.6) we obtain , for Z
(i l) ~

z < Z
(~ )

(T f l (Z ( i ) ) - T f l (Z ( i J ) ) ) ( R f l~~~
(z ) - r

T •
(z)) = 

~ 
(1_ Y

m
)

n ,j ni i—j+l

where Y , m= 1 ,2,... ,k(n) are independent exponential random variables

wi th mean 1.

— 11 —
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The analogous result for R is
n , h

(T (F
1F ( z ) )  - T (F~~ (F (z)_h))) (R (z) - r (z))n n n n n n n ,h T~

[k(n)F (z)] 
[k(n)t]

= (l—Y ) = (l—Y )
m [k(n)(F (z)—h)]+l m m [k(n)(t—h)]+l ~ t=F (z)

[k(n)t]
V
h ~ 

(l—Y )
n i O  t=F (z)

By Donsker’s Theorem and the continuous mapping theorem we obtain

I 
(T (F

1(t)) - T (F~~~( t _ h ) ) ) ( R  (F 1( t ) )  - r (F
1
(t)))n n n n n ,h n T [hk~~~ ] 

n

h < t < 1 -
~ 

Vh W ( t ) ,  h < t < 1 . (4.4)

Equation (4.3) can be used to find the finite sample confidence

bounds f or the “randomly smoothed” failure rate funct ion r
T 

- The
— n , j

asymptotic (n-~”) confidence bounds for r
T 

can be obtained from
n[hk(n)]

Equation (4.4).

Let C~ be the cr’iti~ al value such that

P sup ~ (Y —1) < C . k } = 1—a
j<i<k (n) m i-j+l m ,

and define C. ~ in a similar manner for the  infimum . Then, a lOO (1—a)%
3, ,ct

upper confidence bound for r
T 

is obtained from Equation (4.3) as
n ,j

R~~ 0
(z) + C

~~ k a  (T a
r (F0

(z)) - T0(F~’(F0(z)_ik ’)))’ 
~ 

r
T •

(z)
n ,J

for all z , Z
(. 1) 

< z < Z ( k )

— 12 —

-

~

0 -

~

-

~

- 0
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The above simplifies to

R. (z)(1 + c1 i~ , (4.5)

for Z
(~_1) 

< z < Z
(k) 

. A lower confidence bound is similarly defined.

An approx imate 100(l—ct)% confidence bound is obtained from Eq uation

(4.4) as

R
h 0

(z) + v1~~ ) C (Tn
(F
~
’(F

n
(Z))) -

> r
T 

(z)
n, [hk(n)]

for all z Z((hk~~~ 1 l )  -~~ z < Z(k) 
where ~~~~~~ is the critical

value such thaL

P sup V
h
W(t) 

-~~ 
~~ a 

= 1-a
h t l

A lower confidence bound and a two—sided confidence bound can be similarly

obtained.

5. Critical Val ues for Confidence Bounds for
Randomly Smoothed Failure Rate

To the best of our knowledge , there do not prE’sently exist analytical

methods for calculating C~ or C
+ 

~ . We therefore used a Monte
h, ,~~~

Carlo method to calculate selected values needed in Sections 6 and 7; these

are:

c 55 10 
= -.9981 

- 

C~~55~~~0 
= 5.279

C~~ 55~~~ 5 
= — .9990 C~~ 55~~~ 5 

= 6.008

C
555 10 

= -4.06 C
5 5 1 0 

7.887

C~~ 55 05 
= -4.21 C

55~~~ 5 
- 9.02 .

ft 
0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 0~~~~ - -  -~~~
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The values are based on one run consisting of 20,000 repl icates. On a

second run, also consisting of 20,000 replicates, it was determined that

the four two—sided confidence bands using the above values would have

confidence values approximately equal to .8035, .8988, .8094, and .9052,

respectively. Thus, the one—sided critical values can be used for approx-

imate two—sided confidence bands.

6. Applicat ion to Failure Data on AC Generators

We illustrate our estimation and smoothing technique by considering

some failure data on AC generators reported in NAILSC Report ILS 04—21—72.

This data was previousl y considered by Castell.ino and S ingpurwa ll a  (1973) ,

and by Singpurwalla (1975). This data is presented in Table 1 and consists

of failure and removal (withdrawal) times .

In Figure 1 we present the estimated failure rate using Equation

(1.1). The confidence bounds using Equation (4.5) are so wide that they

are no t usef u ’. For instance, a 90% lower bound is (1 — .9981)R(z) =

.0019R(z) , whereas a 90% upper bound is (1 + 5.279)R(z) = 6.279R(z) -

In Figure 2 we show the estimated failure rate using Equation (1.4),

R
5 ~~ 

. We also show the 90% upper and lower confidence bounds for r
T ~~
n ,5

the randomly smoothed version of the true\ failure rate. We remark here that

the estimator R
555 was ca1~ u1ated using the current interval plus the two

leading and the two lagging intervals. Clearly, the smoothing leads us to

narrower bands than those obtained by considering sing le intervals. The main

issue here is that the confidence bands pertain to a version of r , rather

, than to r itself. Finally ,  the periodic behavior of the failure rate ,

observed by Singpurwal ia (1975), is also exhib ited by R5 
~~

7. Application to Monte Carlo Example and a Discussion

In order to assess the performance of the above estimation procedure

in a known situation , we consider failure data generated from the failure

rate func tion

— 14 — 
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r(t) (1 + -
~~ + sin 

~
-
~
- ) / 12 - ( 7 . 1 )

In Table 2 we present the failure times , and in Fi gure 3 we show a

plot of r(t) - In Figure 4 we present a plot of the estimated failure

rate R
555 , 

together with the 90% upper and lower confidence limits for

rT 
- I n  Figures 5 and 6, we show the “randomly smoothed ” failure rate

n,5

functions r
T 

and r
T 

, respectively. If we superimpose Figures 4
n,l n ,5

and 6, we see that r
T 

falls well within the confidence band.
n,5

7.1 Conclud ing Remarks

We would like to give some interpretation to the randomly smoothed

failure rate r , smoothed by the total time on test window.

Suppose that we first consider R our naive estimator , which  gives

a constant value over failure intervals. Thus, it Is log ical to consider

this as an estimator of r averaged over the int~ rval of Interest; however ,

this is essentially r
T 

- Unless some regular ity condi t ions are imposed
n, 1

on r , it will be impossible to obtain confidence bounds for r over the

interval. Thus, in order to obtain confidence bounds , we consider r
T

0 n , l

instead of r . However, the, confid ence bound on . r1 ,  is so wide that
n , 1

we smooth over more than one interval. Thus In essence, it is a small step

to go from smoothing over ope interval to smoothing over several intervals.

Finally, even though the smoothing window is random (it depend s on the data),

it can be completely speci fied by the failure da ta and is thus comple tely known

for the purpose of interpreting the confidence hand.

— i s—
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TABLE 1

FAILURE DATA FOR AC GENERATORS

Failure Times

1.0 1.3 3.0 3.0 3.8 5.2 10.6
-~~~~ 24.6 29.5 30.6 34.5 38.9 40.9 43.2

70.0 71.6 100.5 141.1 160.8 164.0 167.0
200.3 206.2 212.5 229.0 252.8 252.8 272.7
274.3 27S.3 282.2 403.8 435.3 442.0 444.0
466.6 474.6 495.0 500.0 502.5 509.0 510.8
520.7 523.0 599.0 666.6 676.0 677.0 703.6
744.8 827.1 852.0 861.0 950.4 1097.3

Censoring Times (Withdrawal Times)

0.5 0.5 1.0 1.3 1.5 2.6 5.2
6.1 6.2 6.4 6.5 12.0 12.7 - 16.2
17.0 17.2 19.2 19.5 20.1 23.7 24.7
26.4 28.6 34.5 36.6 38.9 43.~ 45.6
50.6 53.7 58.4 59,3 62.6 64.9 65.9
67.3 69.3 72.6 72.6 74.7 74.8 79.2
79.6 80.0 81.0 83.4 83.4 84.3 86.9
89.0 90.1 90.5 91.3 92.8 100.2 105.~
107.1 109.0 111.8 112.1 113.8 117.0 125.9
126.6 131.2 131.5 132.0 134.3 135.0 140.3
142.1 149.2 149.7 157.1 158.4 161.0 164.0
164.0 166.4 173.5 174.0 184.4 187.2 191.6
211.3 216.5 218.2 225.3 228.9 233.3 237.4
243.1 261.0 265.3 265.7 268.0 268.6 270.5
272.7 274.6 274.9 , �75.2 283.5 292.0 301.8
306.2 314.0 319.0 320.7 321.4 328.7 330.6

- 338.2 347.8 349.0 ‘ 
355.1 359.8 ‘ 371.8 373.6

381.0 382.8 389.0 393.2 402.6 403.7 406.1
406.8 411.3 414.2 428.8 435.3 441.0 446.1
461.1 465.7 466.6 479~6 498.8 505.8 510.8
512.0 514.8 518.~3 585.2 605.2 606.4 617.4
627.7 627.7 630.0 64~~.9 674.4 684.3 685.2
689.9 701.7 704.4 724.4 732.7 752.5 771.2
784.8 784.9 824.4 864.3 881.7 898.7 952.0
957.0 983.1 1064.1 1147.3 1173.6 1762.2

— 1 6 —
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TABLE 2

MONTE CARLO FAILURE TIMES

.127 .406 .425 .635 .669
1.041 1.132 1.156 1.488 1.788

—- 1.907 1.991 2.056 2.122 2.362
2.366 2.473 2.604 2.900 2.970
3.083 3.372 3.557 3.943 4.012
4.352 5.103 5.615 6.843 6.928
7.280 7.942 8.310 8.311 8.546
8.792 8.930 9.137 9.241 9.561
9.904 9.988 10.375 11.507 11.735
12.748 13.301 13.508 14.435 15.518
16.857 17.266 17.426 17.975 18.259

0~~~ — 1 7 —
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Figure l.——Enipirical failure—rate (smoothed over single intervals)
for AC generator data , Table 1
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Figure 4.——Empirical failure—rate (smoothed over 5 T— 347
intervals) for data in Table 2 with failure - Co
ra te r , Figure 3, with 90% upper and lower

confidence bounds for r -I —1 T ,5 L~~~
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